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Motivation

e The current computer architecture has moved towards the
multi/many-core structure.

e However, the algorithms in the current sequential dense numerical linear
algebra libraries (e.g. LAPACK) do not parallelize/scale well on
multi/many-core architectures.

e A new family of algorithms, the tiled algorithms, has recently been
introduced to circumvent this problem.
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Motivation

Tiled algorithms seek to alleviate these by

e using asynchronous scheduling of tasks to remove synchronization points
e breaking up the larger tasks to allow for fine-grained parallelism

e enabling better (optimal) memory-to-computation ratio (“communication
avoiding™)
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Tiled Algorithms - Data Layout

Reordering the data of the matrix into smaller regions of contiguous memory
enables having the data layout match the algorithm.

i
> L
Thus an 7 7 matrix s made up ¢ iles of / // / / // {ht// /:/t "

The tile size becomes a tuning parameter and can depend upon the machine
as well as the algorithm.
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Tiled QR Factorization

A QR factorization of a rectangular matrix A is a decomposition of A as
A= QR
where Q is a unitary matrix (i.e. Q7Q = 1) and R is an upper triangular

matrix. If A is nonsingular, then this factorization is unique when R is
required to have positive diagonal entries.
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Tiled QR Factorization

A QR factorization of a rectangular matrix A is a decomposition of A as
A= QR

where Q is a unitary matrix (i.e. Q7Q = 1) and R is an upper triangular

matrix. If A is nonsingular, then this factorization is unique when R is

required to have positive diagonal entries.

MATLAB uses this to solve
Ax=0b
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Tiled QR Factorization

A QR factorization of a rectangular matrix A is a decomposition of A as
A= QR

where Q is a unitary matrix (i.e. Q7Q = 1) and R is an upper triangular
matrix. If A is nonsingular, then this factorization is unique when R is
required to have positive diagonal entries.

MATLAB uses this to solve
Ax=b

QRx=b = Rx=Q"b

Solve this using back substitution.
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Goal
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Goal
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Tools

code name weight
" =
TTQRT j 2
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Updates

code name weight
TTMQR 6
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Example
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Rules

Every tile below the diagonal must become a zero.

Every tile on the diagonal must become a triangle.

Every triangularization or zeroing requires an update.

Updates must be applied in order.

Only a triangle can zero another triangle.

Before triangularizing, tiles to the left must be zeros.
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Model Variables

Update after triangularization

wiy = t €0, T]: if we finish the update of tile (i, k) at time t
( This update was necessitated by xy =s: | < k,s < t).

Triangularization
X =t € [0, T]: if we complete triangularization of tile (i, k) at time t
Update after zeroing

Yij = t€][0,T]: if we finish the update of tiles (/, k) and (j, k) at t
( This update was necessitated by zj; =s:/ < k,s < t)

Zeroing

zjg =t € [0, T]: if we complete zeroing tile (i, k) using tile (j, k) at t

J Larson | KTH Automatic Control Group Tiled QR | 10 of 15



Example Constraints

After a tile is triangularized, updates must occur in the next columns.

Xik < Wik — 3 Vik<q,i>k|>k
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Xik < Wik — 3 Vik<q,i>k|>k

Tiles strictly below the diagonal must be zeroed at some point.

=1 Vi>k
j
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Example Constraints

After a tile is triangularized, updates must occur in the next columns.

Xik < Wik — 3 Vik<q,i>k|>k

Tiles strictly below the diagonal must be zeroed at some point.
=1 Vi>k
j

After a tile (i, k) is zeroed, we can't use it to zero.

Zijk > znik YV hyi,jk
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Known Results

o Greedy is not optimal!

o |f the number of processors is unlimited, then an optimal procedure is
known.

o |f the number of processors is limited, then the optimal routine is not
known.
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Optimal vs. Existing

If the matrix is divided into 6 rows and 3 columns of tiles, and 6 processors
are available, the optimal schedule is better than any known method. Also,
the zeroing pattern does not match any known algorithms for Tiled QR.

1 2 3 1 2 3 1 2 3
1 x 1 x 1 x

211 = 211 = 211 =
311 2 =« 3|1 2 = 312 2 x
411 2 3 411 2 3 411 3 3
511 2 3 51 2 3 512 3 4
612 4 4 61 2 3 613 4 5
(a) Optimal (b) Flat Tree (c) Greedy
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So where is this useful?

e Solving the IP model takes quite a bit of time.
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So where is this useful?

e Solving the IP model takes quite a bit of time.

e We have a collection of matrices where optimal is better than any
existing method.

e For example: the optimal for 6 x 3 — 6 takes 7% less time than any
known method.
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So where is this useful?

J Larson

Solving the IP model takes quite a bit of time.

We have a collection of matrices where optimal is better than any
existing method.

For example: the optimal for 6 x 3 — 6 takes 7% less time than any
known method.

Many image processing examples involve repeatedly factoring matrices
that are the same size.
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Conclusion

Why does this matter?
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